The crystal and molecular structures
 of (η^{5}-pentamethylcyclopentadienyl) (η^{7}-cycloheptatrienyl)zirconium and -hafnium

Robin D. Rogers *
Department of Chemistry, Northern Illinois University, DeKalb, IL 60115 (U.S.A.)
and Jan H. Teuben
Depariment of Chemistry, University of Groningen, Nijenborgh 16, 9747 AG Groningen (The Netherlands)
(Received April 19th, 1988)

Abstract

The crystal structures of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{M}(\mathrm{M}=\mathrm{Zr}$, Hf) were determined utilizing single crystal X-ray diffraction data. The two compounds are isostructural with the previously determined Ti analog [1], crystallizing in the orthorhombic space group Pnma. Cell data at $-140^{\circ} \mathrm{C}$ are: $\mathrm{M}=\mathrm{Zr}, a \operatorname{lo.464(4),b12.318(5),~c}$ $11.277(3) \AA$ and $D_{\text {calc }} 1.45 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=4 ; \mathrm{M}=\mathrm{Hf}, a 10.442(2), b 12.354(4), c$ $11.246(2) \AA$, and $D_{\text {calc }} 1.85 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=4$. The metal atom and one carbon of each aromatic ring reside on a crystallographic mirror plane. The $\mathrm{M}-\mathrm{C}\left(\eta^{5}\right)$ and $\mathrm{M}-\mathrm{C}\left(\eta^{7}\right)$ separations average $2.485(2)$ and $2.332(3) \AA$, respectively for $\mathrm{M}=\mathrm{Zr}$ and $2.455(3)$ and $2.296(6) \AA$ for $\mathrm{M}=\mathrm{Hf}$. The centroid $\left(\eta^{5}\right)-\mathrm{M}-$ centroid $\left(\eta^{7}\right)$ angles deviate significantly from linearity, 170.3° for $\mathrm{M}=\mathrm{Zr}$ and 172.2° for $\mathrm{M}=\mathrm{Hf}$.

Introduction

Sandwich complexes of titanium, which contain effectively planar organic rings including, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{8}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Ti}[2,3]$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Ti}$ [4-6], have been known and structurally characterized for several years. More recently the pentamethylcyclopentadienyl analogs of these compounds were prepared and structurally characterized [1]. In contrast, little is known regarding the structures of similar sandwich complexes of 7 r and Hf , and no structures containing η^{7}-cycloheptatrienyl ligands with these metals have been reported. In order to more fully characterize this class of compounds for the heavier group 14 congeners and in order to further study the $\mathrm{M}-\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$ interaction, the title compounds were synthesized and spectroscopically characterized [7]. This paper reports the detailed single crystal X-ray diffraction studies of these compounds.

Results and discussion

The molecular structure and atom labelling scheme for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Zr}$ are given in Fig. 1. Bond distances and angles for both the Zr and Hf (side-view Fig. 2) are given in Tab. 1. Both compounds are isostructural with the previously determined Ti analog [1]. In each, the metal atom, one carbon atom in each aromatic ring, and one methyl group reside on a crystallographic mirror plane. The ring atom in the η^{5}-ligand on the mirror $(\mathrm{C}(5))$ is effectively trans to the ring atom

Fig. 1. Molecular structure and atom labelling scheme for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{M}, \mathrm{M}=\mathrm{Zr}\right.$ (shown) and Hf; 50% probability thermal ellipsoids: hydrogen atoms arbitrarily reduced.

Fig. 2. Side view of $M=H f$.

Table 1
Bond distances (\AA) and angles (deg) for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{M}(\mathrm{M}=\mathrm{Zr}, \mathrm{Hf})$

Atoms	Distance ($\mathrm{M}=\mathrm{Zr}$)	Distance ($\mathrm{M}=\mathrm{Hf}$)
M-C(1)	$2.337(6)$	2.290 (8)
M-C(2)	$2.330(4)$	$2.306(5)$
$\mathrm{M}-\mathrm{C}(3)$	2.328(3)	$2.293(5)$
M-C(4)	2.334 (3)	$2.295(5)$
M-C(5)	2.484(4)	$2.455(6)$
M-C(6)	2.488(3)	2.451(4)
$\mathrm{M}-\mathrm{C}(7)$	2.483(3)	$2.458(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.429(5)$	$1.433(7)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.406(6)$	$1.408(8)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.419(5)$	$1.415(7)$
$\mathrm{C}(4)-\mathrm{C}(4)^{\prime a}$	$1.421(8)$	1.41(1)
$C(5)-C(6)$	$1.420(4)$	1.427(6)
$C(5)-C(8)$	$1.502(6)$	$1.508(9)$
$C(6)-C(7)$	1.424(4)	1.413(6)
$\mathrm{C}(6)-\mathrm{C}(9)$	$1.495(5)$	1.499(6)
$\mathrm{C}(7)-\mathrm{C}(10)$	$1.498(4)$	$1.502(6)$
$\mathrm{C}(7)-\mathrm{C}(7)^{\prime}$	$1.413(6)$	$1.445(8)$
Cent1 ${ }^{\text {b }}$-M	1.66	1.62
Cent2-M	2.17	2.13
Atoms	Angle	Angle
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(2)^{\prime}$	128.1(7)	128(1)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	128.5(4)	127.8(6)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	129.2(4)	129.3(5)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(4)^{\prime}$	128.3(2)	128.6(3)
$C(6)-C(5)-C(6)^{\prime}$	108.3(4)	107.4(5)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(8)$	$125.8(2)$	126.3(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	107.7(3)	108.6 (4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)$	126.1(3)	126.0(4)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(9)$	126.2(3)	125.3(4)
$C(6)-C(7)-C(10)$	126.0(3)	127.2(4)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(7)^{\prime}$	108.2(2)	107.6(2)
$C(7)^{\prime}-\mathrm{C}(7)-\mathrm{C}(10)$	125.7(2)	125.1(2)
Centl-M-Cent2	170.3	172.2

${ }^{a}$ Primed atoms are related to those in Tables 4 and 5 by the crystallographic mirror plane. ${ }^{\circ}$ Centl refers to the centroid of the C_{7} ring; Cent2 to the C_{5} ring.
in the η^{7}-ligand on the mirror $(\mathrm{C}(1))$, a situation opposite to the eclipsed conformation found in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{M}(\mathrm{M}=\mathrm{Ti}[6], \mathrm{V}[8])$.

Short $\mathrm{Ti}-\mathrm{C}\left(\eta^{7}\right)$ separations in cycloheptatrienyl compounds have previously been observed, and when compared to results found for similar V and Cr compounds, agree with theoretical calculations that indicate the $\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}$ bond strength decreases in the order Ti, V, Cr [9]. Although not as many compounds are available for comparison, review of the data for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Ti}$, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{8}-\right.$ $\left.\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{M}(\mathrm{M}=\mathrm{Ti}$ [1], $\mathrm{Zr}[10])$ and the title compounds reveals the strong nature of the $\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}$ interaction for Zr and Hf . A comparison of the bonding parameters for these compounds is presented in Tab. 2.

The results in Tab. 2 suggest the major differences in the isostructural sandwich complexes of group 14 can be related directly to changes in metal radius. Thus, the
Table 2
Comparison of the bonding parameters in the series $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{M}(\mathrm{M}=\mathrm{Ti}, \mathrm{Zr}, \mathrm{Hf})$ and related data

Compound	$\begin{aligned} & \mathrm{M}-\mathrm{C}\left(\eta^{\mathrm{s}}\right) \\ & \mathrm{av} \cdot(\mathrm{~A}) \end{aligned}$	Range (A)	$\begin{aligned} & M-\operatorname{Cent}\left(\eta^{5}\right) \\ & (A) \end{aligned}$	$\mathrm{M}-\mathrm{C}\left(\eta^{\mathrm{n}}\right)$ (A), $n=7,8$	Range (A)	M-Cent $\left(\eta^{n}\right)$ (A), $n=7.8$	$\begin{aligned} & \text { Cent-M-Cent } \\ & \left({ }^{\circ}\right) \end{aligned}$	Ref.
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{M}$								
$\mathrm{M}=\mathrm{Ti}{ }^{\text {a }}$	2.32(1)	$2.315(4)-2.335(2)$	1.98	2.21(1)	2.195(5)-2.218(3)	1.49	176.2	1
$\mathbf{M}=\mathbf{Z} \mathbf{r}^{\text {b }}$	2.485(2)	2.483(3)-2.488(3)	2.17	2.332(3)	2.328(3)-2.337(6)	1.66	170.3	This study
$\mathbf{M}=\mathbf{H}{ }^{\text {b }}$	2.455 (3)	2.451(4)-2.458(4)	2.13	$2.296(6)$	$2.290(8)-2.306(5)$	1.62	172.2	This study
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{7} \cdot \mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{M}$								
$\mathrm{M}=\mathrm{Ti}$	2.32			2.19				6
$\mathrm{M}=\mathrm{V}$	2.23			2.25				8
$\mathrm{M}=\mathrm{Cr}$	2.18			2.16				9
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{8}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Ti}$								
	2.353		2.03	2.323				3
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{8}-\mathrm{C}_{8} \mathrm{H}_{3}\right) \mathrm{M}^{c}$								
$\mathrm{M}=\mathrm{Ti}$	$2.338(5)$		2.01	2.34(2)		1.43, 1.46	179.1.179.0	1
$\mathrm{M}=\mathrm{Zr}^{\text {b }}$	$2.478(6)$		2.17	2.45(3)		$1.59,1.67$	173.9.173.6	10

"Structure determined at $-90^{\circ} \mathrm{C}$. ${ }^{\text {b }}$ Structure determined at $-140^{\circ} \mathrm{C}$. "Disordered structures, cyclooctatetraene ligands have two orientations related to the crystallographic mirror plane.
nature of the $\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}$ interaction itself does not change among the group 14 congeners. The average $\mathbf{M}-\mathbf{C}\left(\eta^{7}\right)$ separation is shorter than the average $\mathbf{M}-\mathbf{C}\left(\eta^{5}\right)$ distance in all three compounds: by $0.11 \AA$ for $\mathrm{M}=\mathrm{Ti}, 0.15 \AA$ for $\mathrm{M}=\mathrm{Zr}$, and 0.16 \AA for $M=H f$.

It is possible that small steric influences are also present. In the Ti analog and in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{8}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Ti}$ the centroid-Ti-centroid angles (176.2 and 179.0° average, respectively) are closer to linearity than observed in the title compounds $\left(170.3^{\circ}, \mathrm{Zr}\right.$ and 172.2°, Hf) or in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{8}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{Zr}\left(173.8^{\circ}\right.$ average). On the other hand, the methyl groups in the MC_{7} complexes bend away from the metal and out of the C_{5} plane an average of only $0.032 \AA$ for the $\mathrm{M}=\mathrm{Ti}$ compound with 0.047 \AA for $\mathrm{M}=\mathrm{Zr}$ and $0.048 \AA$ for $\mathrm{M}=\mathrm{Hf}$ observed. If these values are considered statistically significant, they imply an electronic origin-optimization of the overlap

Table 3
Crystal data and summary of intensity data collection and structure refinement

	Compound ($\left.\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{M}$			
	M $=\mathbf{Z r}$	$\mathrm{M}=\mathrm{Hf}$		
Color/Shape	dark red/parallelepiped	translucent orange/parallelepiped		
Formula weight	317.6	404.9		
Space group	Pnma	Pnma		
Temperature (${ }^{\circ} \mathrm{C}$)	- 140	-140		
Cell constants ${ }^{\text {a }}$				
a, \AA	10.464(4)	10.442(2)		
b, \AA	12.318(5)	12.354(4)		
c, \AA	11.277(4)	$11.246(2)$		
Cell volume (A^{3})	1453.6	1450.7		
Formula units/unit cell	4	4		
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.45	1.85		
$\mu_{\text {calc }}\left(\mathrm{cm}^{-1}\right)$	7.24	75.4		
Diffractometer/Scan	Enraf-Nonius CAD-4/ $\theta-2 \theta$	Enraf-Nonius CAD-4/ $\theta-2 \boldsymbol{\theta}$		
Range of transmission factors	0.90/0.94	0.22/0.32		
Radiation, graphite monochromator	Mo-K ${ }_{\alpha}\left(\lambda \begin{array}{l}\text { 0 }\end{array}\right.$	Mo-K $\alpha^{(\lambda} \mathbf{~} 0.71073$)		
Maximum crystal dimensions, mm	$0.08 \times 0.15 \times 0.40$	$0.15 \times 0.20 \times 0.30$		
Scan width	$0.80+0.35 \tan \theta$	$0.80+0.35 \tan \theta$		
Standard reflections	600; 080; 0, 0, 10	800; 0, 12, 0; 0, 0, 10		
Decay of standards	$\pm 2 \%$	$\pm 2 \%$		
Reflections measured	1540	1536		
2θ range, deg	$2 \leqslant 2 \theta \leqslant 50$	$2 \leqslant 2 \theta \leqslant 50$		
Range of h, k, l	+12, +14, +13	+12, +14, +13		
Reflections observed ($\left.F_{\mathrm{o}} \geqslant 5 \sigma\left(F_{\mathrm{o}}\right)\right)^{\text {b }}$	1052	1185		
Computer programs ${ }^{\text {c }}$	SHELX [12]	SHELX [12]		
Structure solution	Coordinates from $\mathrm{M}=\mathrm{Ti}[1]$	Coordinates from $\mathrm{M}=\mathrm{Zr}$		
Number of parameters varied	134	88		
Weights	$\left[\sigma\left(F_{\mathrm{o}}\right)^{2}+0.004 F_{\mathrm{o}}^{2}\right]^{-1}$	$\left[\sigma\left(F_{\mathrm{o}}\right)^{2}+0.00004 F_{0}^{2}\right]^{-1}$		
GOF	0.66	0.98		
$R=\Sigma\left\\|F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}} \\| / / \Sigma\right\| F_{\mathrm{o}}\right\|\right.$	0.036	0.024		
$R_{\text {w }}$	0.049	0.026		
Largest feature final difference map	$0.3 \mathrm{e} \AA^{-3}$	$0.5 \mathrm{e} \AA^{-3}$		

[^0]of the $\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5} \pi$-orbitals and the more diffuse $4 d$ or $5 d$ orbitals on the metal.
The average $\mathrm{M}-\mathrm{C}\left(\eta^{5}\right)$ distances in the TiC_{7} and ZrC_{7} compounds are identical at 3σ to the corresponding averages in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{8}-\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{M}(\mathrm{M}=\mathrm{Ti}, \mathrm{Zr})$. In each case the $M-C_{8}$ separations are longer than the $M-C_{7}$ distances and by the same amount for $\mathrm{M}=\mathrm{Ti}(0.13 \AA)$ and $\mathrm{M}=\mathrm{Zr}(0.12 \AA)$.

The internal bonding parameters of the aromatic rings appear normal. The average values for the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ring for $\mathrm{M}=\mathrm{Zr}$ are $\mathrm{C}-\mathrm{C} 1.419(5) \AA, \mathrm{C}-\mathrm{Me} 1.498$ (3) $\AA, \mathrm{C}-\mathrm{C}-\mathrm{C} 108.1(3)^{\circ}$, and $\mathrm{C}-\mathrm{C}-\mathrm{Mc} 126.0(1)^{\circ}(\mathrm{M}=\mathrm{Hf}: 1.43(1) \AA, 1.503(4) \AA$, $107.9(5)^{\circ}$, and $126.0(8)^{\circ}$, respectively). Corresponding averages for the $\mathrm{C}_{7} \mathrm{H}_{7}$ moiety are for $\mathrm{M}=\mathrm{ZrC}-\mathrm{C}=1.419(8) \AA$ and $\mathrm{C}-\mathrm{C}-\mathrm{C} 128.5(4)^{\circ} \mathrm{C}=\mathrm{Hf}: 1.42(1) \AA$ and $128.4(6)^{\circ}$, respectively). Although the hydrogen atoms of the cycloheptatrienyl ligand for $\mathrm{M}=\mathrm{Zr}$ were fully refined, no consistent trend in the bending of the hydrogen atoms out of the C_{7} plane was observed. In $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Ti}$ the average bending of the C_{7} hydrogen atoms of 10° toward the Ti atom was taken as evidence of reorientation of the ring for better metal overlap as discussed in ref. 11. It appears that the larger Zr will fit better than Ti and no inward bending and consequent rehybridization is necessary.

Experimental

X-ray data collection, structure determination, and refinement for $\left(\eta^{5}-C_{5} M e_{5}\right)\left(\eta^{7}\right.$. $\left.C_{7} H_{7}\right) M(M-Z r, H f)$. Single crystals of the title compounds were mounted on

Table 4
Final fractional coordinates for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Zr}$

Atom	x / a	y / b	z / c	$U_{\text {cuv }}{ }^{a}$
Zr	$0.36059(4)$	0.7500	$0.50685(3)$	0.019
$\mathrm{C}(1)$	$0.5816(5)$	0.7500	$0.5370(6)$	0.047
$\mathrm{C}(2)$	$0.5335(4)$	$0.6457(4)$	$0.5699(4)$	0.045
$\mathrm{C}(3)$	$0.4291(4)$	$0.6209(3)$	$0.6436(3)$	0.039
$\mathrm{C}(4)$	$0.3445(4)$	$0.6923(3)$	$0.7035(3)$	0.036
$\mathrm{C}(5)$	$0.1304(4)$	0.7500	$0.4532(4)$	0.018
$\mathrm{C}(6)$	$0.1846(3)$	$0.6565(2)$	$0.3992(2)$	0.018
$\mathrm{C}(7)$	$0.2733(3)$	$0.6926(2)$	$0.3119(2)$	0.018
$\mathrm{C}(8)$	$0.0286(5)$	0.7500	$0.5471(4)$	0.025
$\mathrm{C}(9)$	$0.1522(3)$	$0.5412(3)$	$0.4273(3)$	0.024
$\mathrm{C}(10)$	$0.3486(4)$	$0.6216(3)$	$0.2298(3)$	0.029
$\mathrm{H}(1)[\mathrm{C}(1)]$	$0.67(1)$	0.750	$0.480(8)$	(iso)
$\mathrm{H}(2)[\mathrm{C}(2)]$	$0.574(4)$	$0.587(4)$	$0.535(4)$	(iso)
$\mathrm{H}(3)[\mathrm{C}(3)]$	$0.409(3)$	$0.543(3)$	$0.646(3)$	(iso)
$\mathrm{H}(4)[\mathrm{C}(4)]$	$0.276(4)$	$0.6 .54(4)$	$0.754(5)$	(iso)
$\mathrm{H}(5)[\mathrm{C}(8)]$	$-0.060(6)$	0.750	$0.512(4)$	(iso)
$\mathrm{H}(6)[\mathrm{C}(8)]$	$0.031(4)$	$0.688(3)$	$0.591(4)$	(iso)
$\mathrm{H}(7)[\mathrm{C}(9)]$	$0.078(4)$	$0.514(3)$	$0.379(4)$	(iso)
$\mathrm{H}(8)[\mathrm{C}(9)]$	$0.127(3)$	$0.525(4)$	$0.510(3)$	(iso)
$\mathrm{H}(9)[\mathrm{C}(9)]$	$0.222(4)$	$0.499(4)$	$0.407(4)$	(iso)
$\mathrm{H}(10)[\mathrm{C}(10)]$	$0.365(3)$	$0.548(3)$	$0.258(4)$	(iso)
$\mathrm{H}(11)[\mathrm{C}(10)]$	$0.435(4)$	$0.651(3)$	$0.208(3)$	(iso)
$\mathrm{H}(12)[\mathrm{C}(10)]$	$0.301(5)$	$0.617(3)$	$0.165(5)$	(iso)

[^1]Table 5
Final fractional coordinates for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Hf}$

Atom	x / a	y / b	z / c	$U_{\text {eqv }}$
Hf	$0.35830(3)$	0.7500	$0.51127(3)$	0.016
$\mathrm{C}(1)$	$0.5761(8)$	0.7500	$0.5349(8)$	0.042
$\mathrm{C}(2)$	$0.5300(5)$	$0.6455(5)$	$0.5700(5)$	0.039
$\mathrm{C}(3)$	$0.4255(5)$	$0.6216(4)$	$0.6447(5)$	0.033
$\mathrm{C}(4)$	$0.3417(5)$	$0.6931(4)$	$0.7049(5)$	0.033
$\mathrm{C}(5)$	$0.1310(6)$	0.7500	$0.4553(6)$	0.016
$\mathrm{C}(6)$	$0.1878(4)$	$0.6569(4)$	$0.4018(4)$	0.013
$\mathrm{C}(7)$	$0.2778(4)$	$0.6915(3)$	$0.3162(4)$	0.015
$\mathrm{C}(8)$	$0.0278(6)$	0.7500	$0.5491(6)$	0.023
$\mathrm{C}(9)$	$0.1545(4)$	$0.5413(4)$	$0.4281(5)$	0.022
$\mathrm{C}(10)$	$0.3554(5)$	$0.6216(4)$	$0.2340(5)$	0.026
$\mathrm{H}(1)[\mathrm{C}(1)]$	0.645	0.750	0.480	(iso)
$\mathrm{H}(2)[\mathrm{C}(2)]$	0.575	0.585	0.539	(iso)
$\mathrm{H}(3)[\mathrm{C}(3)]$	0.409	0.547	0.656	(iso)
$\mathrm{H}(4)[\mathrm{C}(4)]$	0.276	0.660	0.751	(iso)
$\mathrm{H}(5)[\mathrm{C}(8)]$	-0.049	0.750	0.500	(iso)
$\mathrm{H}(6)[\mathrm{C}(8)]$	0.026	0.683	0.590	(iso)
$\mathrm{H}(7)[\mathrm{C}(9)]$	0.083	0.516	0.386	(iso)
$\mathrm{H}(8)[\mathrm{C}(9)]$	0.104	0.534	(iso)	
$\mathrm{H}(9)[\mathrm{C}(9)]$	0.225	0.498	0.497	(iso)
$\mathrm{H}(10)[\mathrm{C}(10)]$	0.357	0.554	(iso)	
$\mathrm{H}(11)[\mathrm{C}(10)]$	0.443	0.650	(iso)	
$\mathrm{H}(12)[\mathrm{C}(10)]$	0.306		0.2626	(iso)

pins and transferred to the goniometer. The crystals were cooled to $-140^{\circ} \mathrm{C}$ during data collection using a stream of cold nitrogen gas. The space groups were determined to be either the centric Pnma or acentric $P n 2_{1} a$ from the systematic absences. The isostructural titanium analog was satisfactorily refined in the centric space group Pnma. The subsequent successful refinements of the title structures in this space group confirmed this choice. A summary of data collection parameters is given in Tab. 3.

The methyl hydrogen atoms were located from difference Fourier maps and refined for $\mathrm{M}=\mathrm{Zr}$, but included with fixed contributions ($B 5.5 \AA^{2}$) for $\mathrm{M}=\mathrm{Hf}$. Refinement of the nonhydrogen atoms with anisotropic temperature factors led to the final values of R and R_{w} given in Tab. 3. The final values of the positional parameters are given in Tables 4 and 5.

Acknowledgements

We wish to thank the donors of the Petroleum Research Fund, administered by the American Chemical Society (RDR), for support of this work. The U.S. National Science Foundation's Chemical Instrumentation Program provided funds used to purchase the diffractometer (NIU).

Supplementary material

Tables of thermal parameters, least-squares planes results, and calculated and observed structure factors for both compounds are available. See NAPS document

No. 04625 for 9 pages of supplementary material which may be ordered from NAPS c/o Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, NY 10163. Remit in advance in U.S. funds only, $\$ 7.75$ for photocopies or $\$ 4.00$ for microfiche. Outside the U.S. and Canada, add postage of $\$ 4.50$ for the first 20 pages and $\$ 1.00$ for each 10 pages of material thereafter. $\$ 1.50$ for microfiche postage.

References

1 L.B. Kool, M.D. Rausch, and R.D. Rogers. J. Organomet. Chem., 297 (1985) 289.
2 H.O. van Oven and H.J. de Liefde Meijer, J. Organomet. Chem., 19 (1969) 373.
3 P.A. Kroon and R.B. Helmholdt, J. Organomet. Chem., 25 (1970) 451.
4 H.O. van Oven and H.J. de Liefde Meijer, J. Organomet. Chem., 23 (1970) 159.
5 B. Demerseman, G. Bouquet. and M. Bigorgne, J. Organomet. Chem., 101 (1975) C24.
6 J.D. Zeinstra and J.L. de Boer, J. Organomet. Chem., 54 (1973) 207.
7 (a) J. Blenkers, P. Bruin, and J.H. Teuben, J. Organomet. Chem, 297 (1985) 61; (b) R.R. Andrea. A. Terpstra, A. Oskam, P. Bruin. and J.H. Teuben. ibid., 307 (1986) 307.
8 G. Engebretson and R.E. Rundle, J. Am. Chem. Soc., 85 (1963) 481.
9 J.D. Zeinstra and W.C. Nieuwpoort. Inorg. Chim. Acta, 30 (1978) 103 and refs. therein.
10 R.D. Rogers and J.H. Teuben. J. Organomet. Chem.. submitted (1988).
11 J.W. Chinn Jr. and M.B. Hall. J. Am. Chem. Soc., 105 (1983) 4930.
12 G.M. Sheldrick. SHELX. a system of computer programs for X-ray structure determination as locally modified, 1976.
13 International Tables for X-ray Crystallography; Kynoch Press: Birmingham. England. Vol. IV, 1972.

[^0]: ${ }^{a}$ Least-squares refinement of $((\sin \theta) / \lambda)^{2}$ values for 25 reflections $\theta>20^{\circ}$. ${ }^{b}$ Corrections: Lorentzpolarization and absorption (empirical, psi scan, $\mathrm{M}=\mathrm{Hf}$). ${ }^{〔}$ Neutral scattering factors and anomalous dispersion corrections from ref. 13.

[^1]: ${ }^{a} U_{\text {eqv }}$ is equal to $\left(U_{11}+U_{22}+U_{33}\right) / 3$.

